November 5, 2024

Wellness Nest

take care of your Health d, Live Your Best Life

Specialized pro-resolving mediators in vascular inflammation and atherosclerotic cardiovascular disease

Specialized pro-resolving mediators in vascular inflammation and atherosclerotic cardiovascular disease
  • Smith, R. “Let food be thy medicine …”. BMJ 328, 0-g (2004).

    Google Scholar 

  • Alexis, A. C. Honest nutrition. Can food be medicine? Pros and cons. MedicalNewsToday www.medicalnewstoday.com/articles/can-food-be-medicine-pros-and-cons (2022).

  • Mente et al. Diet, cardiovascular disease, and mortality in 80 countries. Eur. Heart J. 44, 2560–2579 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sinclair, H. M. Deficiency of essential fatty acids and atherosclerosis, etcetera. Lancet 270, 381–383 (1956).

    CAS 
    PubMed 

    Google Scholar 

  • Harris, W. S., Calder, P. C., Mozaffarian, D. & Serhan, C. N. Bang and Dyerberg’s omega-3 discovery turns fifty. Nat. Food 2, 303–305 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Bang, H. O., Dyerberg, J. & Nielsen, A. B. Plasma lipid and lipoprotein pattern in Greenlandic west-coast Eskimos. Lancet 1, 1143–1145 (1971).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bracco, U. & Deckelbaum, R. J. Polyunsaturated Fatty Acids in Human Nutrition (Raven Press, 1992).

  • Serhan, C. N. Pro-resolving lipid mediators are leads for resolution physiology. Nature 510, 92–101 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Metchnikoff, E. Immunity in Infective Diseases (Cambridge University Press, Reprinted 1905); translated by Binnie, F. G.

  • Metchnikoff, E. Lectures on the Comparative Pathology of Inflammation Delivered at the Pasteur Institute in 1891 Lecture XII (Kegan Paul, Trench, Trübner, 1893); translated from the French by Starling F. A. & Starling E. H. (reprinted by HardPress, 2019).

  • Libby, P., Tabas, I., Fredman, G. & Fisher, E. A. Inflammation and its resolution as determinants of acute coronary syndromes. Circ. Res. 114, 1867–1879 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ridker, P. M. et al. Inflammation and cholesterol as predictors of cardiovascular events among patients receiving statin therapy: a collaborative analysis of three randomised trials. Lancet 401, 1293–1301 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bonaventura, A. & Abbate, A. Colchicine for cardiovascular prevention: the dawn of a new era has finally come. Eur. Heart J. 44, 3303–3304 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Serhan, C. N. et al. Resolution of inflammation: state of the art, definitions and terms. FASEB J. 21, 325–332 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Serhan, C. N. & Chiang, N. Resolvins and cysteinyl-containing pro-resolving mediators activate resolution of infectious inflammation and tissue regeneration. Prostaglandins Other Lipid Mediat. 166, 106718 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Serhan, C. N., Libreros, S. & Nshimiyimana, R. E-series resolvin metabolome, biosynthesis and critical role of stereochemistry of specialized pro-resolving mediators (SPMs) in inflammation-resolution: preparing SPMs for long COVID-19, human clinical trials, and targeted precision nutrition. Semin. Immunol. 59, 101597 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Serhan, C. N. & Levy, B. D. Resolvins in inflammation: emergence of the pro-resolving superfamily of mediators. J. Clin. Invest. 128, 2657–2669 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Serhan, C. N. et al. Novel functional sets of lipid-derived mediators with antiinflammatory actions generated from omega-3 fatty acids via cyclooxygenase 2-nonsteroidal antiinflammatory drugs and transcellular processing. J. Exp. Med. 192, 1197–1204 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Serhan, C. N. et al. Resolvins: a family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals. J. Exp. Med. 196, 1025–1037 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Serhan, C. N. & Petasis, N. A. Resolvins and protectins in inflammation resolution. Chem. Rev. 111, 5922–5943 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Serhan, C. N., Dalli, J., Colas, R. A., Winkler, J. W. & Chiang, N. Protectins and maresins: new pro-resolving families of mediators in acute inflammation and resolution bioactive metabolome. Biochim. Biophys. Acta 1851, 397–413 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Serhan, C. N. et al. Maresins: novel macrophage mediators with potent antiinflammatory and proresolving actions. J. Exp. Med. 206, 15–23 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Werz, O. et al. Human macrophages differentially produce specific resolvin or leukotriene signals that depend on bacterial pathogenicity. Nat. Commun. 9, 59 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pouliot, M., Clish, C. B., Petasis, N. A., Van Dyke, T. E. & Serhan, C. N. Lipoxin A4 analogues inhibit leukocyte recruitment to Porphyromonas gingivalis: a role for cyclooxygenase-2 and lipoxins in periodontal disease. Biochemistry 39, 4761–4768 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tabas, I. & Glass, C. K. Anti-inflammatory therapy in chronic disease: challenges and opportunities. Science 339, 166–172 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cotran, R. S. The endothelium and inflammation: new insights. Monogr. Pathol. (23), 18-37 (1982).

  • Arita, M. et al. Resolvin E1 selectively interacts with leukotriene B4 receptor BLT1 and ChemR23 to regulate inflammation. J. Immunol. 178, 3912–3917 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Arita, M. et al. Stereochemical assignment, antiinflammatory properties, and receptor for the omega-3 lipid mediator resolvin E1. J. Exp. Med. 201, 713–722 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mancini, J. A., O’Neill, G. P., Bayly, C. & Vickers, P. J. Mutation of serine-516 in human prostaglandin G/H synthase-2 to methionine or aspirin acetylation of this residue stimulates 15-R-HETE synthesis. FEBS Lett. 342, 33–37 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Oh, S. F., Pillai, P. S., Recchiuti, A., Yang, R. & Serhan, C. N. Pro-resolving actions and stereoselective biosynthesis of 18S E-series resolvins in human leukocytes and murine inflammation. J. Clin. Invest. 121, 569–581 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Arita, M. et al. Metabolic inactivation of resolvin E1 and stabilization of its anti-inflammatory actions. J. Biol. Chem. 281, 22847–22854 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Divanovic, S. et al. Contributions of the three CYP1 monooxygenases to pro-inflammatory and inflammation-resolution lipid mediator pathways. J. Immunol. 191, 3347–3357 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lee, J. Y. et al. Neuronal SphK1 acetylates COX2 and contributes to pathogenesis in a model of Alzheimer’s Disease. Nat. Commun. 9, 1479 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, J. Y. et al. N-AS-triggered SPMs are direct regulators of microglia in a model of Alzheimer’s disease. Nat. Commun. 11, 2358 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, S. F., Huri, D. A. & Snyder, S. H. Inducible nitric oxide synthase binds, S-nitrosylates, and activates cyclooxygenase-2. Science 310, 1966–1970 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dalli, J., Chiang, N. & Serhan, C. N. Elucidation of novel 13-series resolvins that increase with atorvastatin and clear infections. Nat. Med. 21, 1071–1075 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bannenberg, G. L. et al. Molecular circuits of resolution: formation and actions of resolvins and protectins. J. Immunol. 174, 4345–4355 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schwab, J. M., Chiang, N., Arita, M. & Serhan, C. N. Resolvin E1 and protectin D1 activate inflammation-resolution programmes. Nature 447, 869–874 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Malawista, S. E., de Boisfleury Chevance, A., van Damme, J. & Serhan, C. N. Tonic inhibition of chemotaxis in human plasma. Proc. Natl Acad. Sci. Usa. 105, 17949–17954 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Levy, B. D., Clish, C. B., Schmidt, B., Gronert, K. & Serhan, C. N. Lipid mediator class switching during acute inflammation: signals in resolution. Nat. Immunol. 2, 612–619 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fukunaga, K., Kohli, P., Bonnans, C., Fredenburgh, L. E. & Levy, B. D. Cyclooxygenase 2 plays a pivotal role in the resolution of acute lung injury. J. Immunol. 174, 5033–5039 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ji, R. R. Specialized pro-resolving mediators as resolution pharmacology for the control of pain and itch. Annu. Rev. Pharmacol. Toxicol. 63, 273–293 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Serhan, C. N. et al. Novel proresolving aspirin-triggered DHA pathway. Chem. Biol. 18, 976–987 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bazan, N. G. Neuroprotectin D1 (NPD1): a DHA-derived mediator that protects brain and retina against cell injury-induced oxidative stress. Brain Pathol. 15, 159–166 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rodriguez, A. R. & Spur, B. W. First total syntheses of the pro-resolving lipid mediators 7(S),13(R),20(S)-resolvin T1 and 7(S),13(R)-resolvin T4. Tetrahedron Lett. 61, 151473 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rodriguez, A. R. & Spur, B. W. First total synthesis of the pro-resolving lipid mediator 7(S),12(R),13(S)-resolvin T2 and its 13(R)-epimer. Tetrahedron Lett. 61, 151857 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chiang, N. et al. Resolvin T-series reduce neutrophil extracellular traps. Blood 139, 1222–1233 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Middleton, E. A. et al. Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Blood 136, 1169–1179 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hong, S., Gronert, K., Devchand, P., Moussignac, R.-L. & Serhan, C. N. Novel docosatrienes and 17S-resolvins generated from docosahexaenoic acid in murine brain, human blood and glial cells: autacoids in anti-inflammation. J. Biol. Chem. 278, 14677–14687 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dalli, J., Colas, R. A. & Serhan, C. N. Novel n-3 immunoresolvents: structures and actions. Sci. Rep. 3, 1940 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Endo, J. et al. 18-HEPE, an n-3 fatty acid metabolite released by macrophages, prevents pressure overload-induced maladaptive cardiac remodeling. J. Exp. Med. 211, 1673–1687 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kasuga, K. et al. Rapid appearance of resolvin precursors in inflammatory exudates: novel mechanisms in resolution. J. Immunol. 181, 8677–8687 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schloss, M. J., Swirski, F. K. & Nahrendorf, M. Modifiable cardiovascular risk, hematopoiesis, and innate immunity. Circ. Res. 126, 1242–1259 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Croasdell, A. et al. Resolvins attenuate inflammation and promote resolution in cigarette smoke-exposed human macrophages. Am. J. Physiol. Lung Cell Mol. Physiol. 309, L888–L901 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hsiao, H. M. et al. A novel anti-inflammatory and pro-resolving role for resolvin D1 in acute cigarette smoke-induced lung inflammation. PLoS ONE 8, e58258 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Thatcher, T. H., Woeller, C. F., McCarthy, C. E. & Sime, P. J. Quenching the fires: pro-resolving mediators, air pollution, and smoking. Pharmacol. Ther. 197, 212–224 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Awji, E. G. et al. Wood smoke enhances cigarette smoke-induced inflammation by inducing the aryl hydrocarbon receptor repressor in airway epithelial cells. Am. J. Respir. Cell Mol. Biol. 52, 377–386 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dominguez, E. C. et al. Aspirin-triggered resolvin D1 reduces chronic dust-induced lung pathology without altering susceptibility to dust-enhanced carcinogenesis. Cancers 14, 1900 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ramar, M., Yano, N. & Fedulov, A. V. Intra-airway treatment with synthetic lipoxin A4 and resolvin E2 mitigates neonatal asthma triggered by maternal exposure to environmental particles. Int. J. Mol. Sci. 24, 6145 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bevan, G. H., Al-Kindi, S. G., Brook, R. D., Munzel, T. & Rajagopalan, S. Ambient air pollution and atherosclerosis: insights into dose, time, and mechanisms. Arterioscler. Thromb. Vasc. Biol. 41, 628–637 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • McAlpine, C. S. et al. Sleep modulates haematopoiesis and protects against atherosclerosis. Nature 566, 383–387 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cappuccio, F. P., Cooper, D., D’Elia, L., Strazzullo, P. & Miller, M. A. Sleep duration predicts cardiovascular outcomes: a systematic review and meta-analysis of prospective studies. Eur. Heart J. 32, 1484–1492 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Engert, L. C., Mullington, J. M. & Haack, M. Prolonged experimental sleep disturbance affects the inflammatory resolution pathways in healthy humans. Brain Behav. Immun. 113, 12–20 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Brezinski, D. A., Nesto, R. W. & Serhan, C. N. Angioplasty triggers intracoronary leukotrienes and lipoxin A4. Impact of aspirin therapy. Circulation 86, 56–63 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shen, J. et al. Macrophage-mediated 15-lipoxygenase expression protects against atherosclerosis development. J. Clin. Invest. 98, 2201–2208 (1996).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Serhan, C. N. et al. Reduced inflammation and tissue damage in transgenic rabbits overexpressing 15-lipoxygenase and endogenous anti-inflammatory lipid mediators. J. Immunol. 171, 6856–6865 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Merched, A. J., Ko, K., Gotlinger, K. H., Serhan, C. N. & Chan, L. Atherosclerosis: evidence for impairment of resolution of vascular inflammation governed by specific lipid mediators. FASEB J. 22, 3595–3606 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Merched, A. J., Serhan, C. N. & Chan, L. Nutrigenetic disruption of inflammation-resolution homeostasis and atherogenesis. J. Nutrigenet Nutrigenomics 4, 12–24 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dwyer, J. H. et al. Arachidonate 5-lipoxygenase promoter genotype, dietary arachidonic acid, and atherosclerosis. N. Engl. J. Med. 350, 29–37 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fredman, G. et al. An imbalance between specialized pro-resolving lipid mediators and pro-inflammatory leukotrienes promotes instability of atherosclerotic plaques. Nat. Commun. 7, 12859 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Thul, S., Labat, C., Temmar, M., Benetos, A. & Back, M. Low salivary resolvin D1 to leukotriene B4 ratio predicts carotid intima media thickness: a novel biomarker of non-resolving vascular inflammation. Eur. J. Prev. Cardiol. 24, 903–906 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Bazan, H. A. et al. Circulating inflammation-resolving lipid mediators RvD1 and DHA are decreased in patients with acutely symptomatic carotid disease. Prostaglandins Leukot. Essent. Fat. Acids 125, 43–47 (2017).

    Article 
    CAS 

    Google Scholar 

  • Sun, C. et al. Acute coronary syndrome may be associated with decreased resolvin D1-to-leukotriene B4 ratio. Int. Heart J. 64, 22–27 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Viola, J. R. et al. Resolving lipid mediators maresin 1 and resolvin D2 prevent atheroprogression in mice. Circ. Res. 119, 1030–1038 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Decker, C., Sadhu, S. & Fredman, G. Pro-resolving ligands orchestrate phagocytosis. Front. Immunol. 12, 660865 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Thorp, E., Cui, D., Schrijvers, D. M., Kuriakose, G. & Tabas, I. Mertk receptor mutation reduces efferocytosis efficiency and promotes apoptotic cell accumulation and plaque necrosis in atherosclerotic lesions of apoe−/− mice. Arterioscler. Thromb. Vasc. Biol. 28, 1421–1428 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schrijvers, D. M., De Meyer, G. R., Herman, A. G. & Martinet, W. Phagocytosis in atherosclerosis: molecular mechanisms and implications for plaque progression and stability. Cardiovasc. Res. 73, 470–480 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ait-Oufella, H. et al. Defective mer receptor tyrosine kinase signaling in bone marrow cells promotes apoptotic cell accumulation and accelerates atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 28, 1429–1431 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kojima, Y. et al. CD47-blocking antibodies restore phagocytosis and prevent atherosclerosis. Nature 536, 86–90 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tabas, I. Macrophage death and defective inflammation resolution in atherosclerosis. Nat. Rev. Immunol. 10, 36–46 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Doran, A. C., Yurdagul, A. Jr. & Tabas, I. Efferocytosis in health and disease. Nat. Rev. Immunol. 20, 254–267 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cai, B. et al. MerTK cleavage limits proresolving mediator biosynthesis and exacerbates tissue inflammation. Proc. Natl Acad. Sci. USA 113, 6526–6531 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cai, B. et al. MerTK signaling in macrophages promotes the synthesis of inflammation resolution mediators by suppressing CaMKII activity. Sci. Signal. 11, eaar3721 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cai, B. et al. MerTK receptor cleavage promotes plaque necrosis and defective resolution in atherosclerosis. J. Clin. Invest. 127, 564–568 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yurdagul, A. Jr. et al. Macrophage metabolism of apoptotic cell-derived arginine promotes continual efferocytosis and resolution of injury. Cell Metab. 31, 518–533.e10 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ampomah, P. B. et al. Macrophages use apoptotic cell-derived methionine and DNMT3A during efferocytosis to promote tissue resolution. Nat. Metab. 4, 444–457 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gerlach, B. D. et al. Resolvin D1 promotes the targeting and clearance of necroptotic cells. Cell Death Differ. 41, 1062–1075 (2019).

    Google Scholar 

  • Jarr, K. U. et al. Effect of CD47 blockade on vascular inflammation. N. Engl. J. Med. 384, 382–383 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tsuda, S. et al. Novel mechanism of regulation of the 5-lipoxygenase/leukotriene B4 pathway by high-density lipoprotein in macrophages. Sci. Rep. 7, 12989 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rymut, N. et al. Resolvin D1 promotes efferocytosis in aging by limiting senescent cell-induced MerTK cleavage. FASEB J. 34, 597–609 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Baker, D. J. et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479, 232–236 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Childs, B. G. et al. Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science 354, 472–477 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rayner, K. J. Cell death in the vessel wall: the good, the bad, the ugly. Arterioscler. Thromb. Vasc. Biol. 37, e75–e81 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hosseini, Z. et al. Resolvin D1 enhances necroptotic cell clearance through promoting macrophage fatty acid oxidation and oxidative phosphorylation. Arterioscler. Thromb. Vasc. Biol. 41, 1062–1075 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sharma, M. et al. Regulatory T cells license macrophage pro-resolving functions during atherosclerosis regression. Circ. Res. 127, 335–353 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Salic, K. et al. Resolvin E1 attenuates atherosclerosis in absence of cholesterol-lowering effects and on top of atorvastatin. Atherosclerosis 250, 158–165 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Petri, M. H. et al. Aspirin-triggered lipoxin inhibits atherosclerosis progression in apolipoprotein E−/− mice. Br. J. Pharmacol. 174, 4043–4054 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bardin, M. et al. The resolvin D2–GPR18 axis is expressed in human coronary atherosclerosis and transduces atheroprotection in apolipoprotein E deficient mice. Biochem. Pharmacol. 201, 115075 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hasturk, H. et al. Resolvin E1 (RvE1) attenuates atherosclerotic plaque formation in diet and inflammation-induced atherogenesis. Arterioscler. Thromb. Vasc. Biol. 35, 1123–1133 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sadhu, S. et al. Radiation-induced macrophage senescence impairs resolution programs and drives cardiovascular inflammation. J. Immunol. 207, 1812–1823 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fuchs, A. et al. Subclinical coronary atherosclerosis and risk for myocardial infarction in a Danish cohort: a prospective observational cohort study. Ann. Intern. Med. 176, 433–442 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Hasturk, H. et al. Safety and preliminary efficacy of a novel host-modulatory therapy for reducing gingival inflammation. Front. Immunol. 12, 704163 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rahman, K. et al. Inflammatory Ly6Chi monocytes and their conversion to M2 macrophages drive atherosclerosis regression. J. Clin. Invest. 127, 2904–2915 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Williams, K. J., Feig, J. E. & Fisher, E. A. Rapid regression of atherosclerosis: insights from the clinical and experimental literature. Nat. Clin. Pract. Cardiovasc. Med. 5, 91–102 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kwan, A. C., Aronis, K. N., Sandfort, V., Blumenthal, R. S. & Bluemke, D. A. Bridging the gap for lipid lowering therapy: plaque regression, coronary computed tomographic angiography, and imaging-guided personalized medicine. Expert. Rev. Cardiovasc. Ther. 15, 547–558 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Welty, F. K. et al. Regression of human coronary artery plaque is associated with a high ratio of (18-hydroxy-eicosapentaenoic acid + resolvin E1) to leukotriene B4. FASEB J. 35, e21448 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zheng, J. J., Pena Calderin, E., Hill, B. G., Bhatnagar, A. & Hellmann, J. Exercise promotes resolution of acute inflammation by catecholamine-mediated stimulation of resolvin D1 biosynthesis. J. Immunol. 203, 3013–3022 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lamon-Fava, S. et al. Dose- and time-dependent increase in circulating anti-inflammatory and pro-resolving lipid mediators following eicosapentaenoic acid supplementation in patients with major depressive disorder and chronic inflammation. Prostaglandins Leukot. Essent. Fat. Acids 164, 102219 (2021).

    Article 
    CAS 

    Google Scholar 

  • Bhatt, D. L. et al. Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. N. Engl. J. Med. 380, 11–22 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Budoff, M. J. et al. Effect of icosapent ethyl on progression of coronary atherosclerosis in patients with elevated triglycerides on statin therapy: final results of the EVAPORATE trial. Eur. Heart J. 41, 3925–3932 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huston, J. et al. A critical review of icosapent ethyl in cardiovascular risk reduction. Am. J. Cardiovasc. Drugs 23, 393–406 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nicholls, S. J. et al. Effect of high-dose omega-3 fatty acids vs corn oil on major adverse cardiovascular events in patients at high cardiovascular risk: the STRENGTH randomized clinical trial. JAMA 324, 2268–2280 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gerster, H. Can adults adequately convert alpha-linolenic acid (18:3n-3) to eicosapentaenoic acid (20:5n-3) and docosahexaenoic acid (22:6n-3)? Int. J. Vitam. Nutr. Res. 68, 159–173 (1998).

    CAS 
    PubMed 

    Google Scholar 

  • Rathod, K. S. et al. Accelerated resolution of inflammation underlies sex differences in inflammatory responses in humans. J. Clin. Invest. 127, 169–182 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Filiberto, A. C. et al. Sex differences in specialized pro-resolving lipid mediators and their receptors in abdominal aortic aneurysms. JVS Vasc. Sci. 4, 100107 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Filiberto, A. C. et al. Resolution of inflammation via RvD1/FPR2 signaling mitigates Nox2 activation and ferroptosis of macrophages in experimental abdominal aortic aneurysms. FASEB J. 36, e22579 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Spinosa, M. et al. Resolvin D1 decreases abdominal aortic aneurysm formation by inhibiting NETosis in a mouse model. J. Vasc. Surg. 68, 93S–103S (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pope, N. H. et al. D-series resolvins inhibit murine abdominal aortic aneurysm formation and increase M2 macrophage polarization. FASEB J. 30, 4192–4201 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, B., Mottola, G., Schaller, M., Upchurch, G. R. Jr. & Conte, M. S. Resolution of vascular injury: specialized lipid mediators and their evolving therapeutic implications. Mol. Asp. Med. 58, 72–82 (2017).

    Article 
    CAS 

    Google Scholar 

  • Krishnamoorthy, S. et al. Resolvin D1 binds human phagocytes with evidence for proresolving receptors. Proc. Natl Acad. Sci. USA 107, 1660–1665 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Folco, E. J. et al. Neutrophil extracellular traps induce endothelial cell activation and tissue factor production through interleukin-1α and cathepsin G. Arterioscler. Thromb. Vasc. Biol. 38, 1901–1912 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yalcinkaya, M. et al. Cholesterol accumulation in macrophages drives NETosis in atherosclerotic plaques via IL-1β secretion. Cardiovasc. Res. 119, 969–981 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dona, M. et al. Resolvin E1, an EPA-derived mediator in whole blood, selectively counterregulates leukocytes and platelets. Blood 112, 848–855 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Szymanska, P., Luzak, B., Milowska, K. & Golanski, J. The anti-aggregative potential of resolvin E1 on human platelets. Molecules 28, 5323 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cherpokova, D. et al. Resolvin D4 attenuates the severity of pathological thrombosis in mice. Blood 134, 1458–1468 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hiram, R. Resolution-promoting autacoids demonstrate promising cardioprotective effects against heart diseases. Mol. Biol. Rep. 49, 5179–5197 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tourki, B., Black, L. M., Kain, V. & Halade, G. V. Lipoxygenase inhibitor ML351 dysregulated an innate inflammatory response leading to impaired cardiac repair in acute heart failure. Biomed. Pharmacother. 139, 111574 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Halade, G. V. et al. Arachidonate 5-lipoxygenase is essential for biosynthesis of specialized pro-resolving mediators and cardiac repair in heart failure. Am. J. Physiol. Heart Circ. Physiol. 323, H721–H737 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Halade, G. V., Kain, V. & Serhan, C. N. Immune responsive resolvin D1 programs myocardial infarction-induced cardiorenal syndrome in heart failure. FASEB J. 32, 3717–3729 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tourki, B. et al. Lack of resolution sensor drives age-related cardiometabolic and cardiorenal defects and impedes inflammation-resolution in heart failure. Mol. Metab. 31, 138–149 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, J. et al. Formyl peptide receptor type 2 (FPR2) deficiency in myeloid cells amplifies sepsis-induced cardiac dysfunction. J. Innate Immun. 15, 548–561 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lau, E. S. et al. Eicosanoid and eicosanoid-related inflammatory mediators and exercise intolerance in heart failure with preserved ejection fraction. Nat. Commun. 14, 7557 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Qintar, M. et al. Noncardiac chest pain after acute myocardial infarction: frequency and association with health status outcomes. Am. Heart J. 186, 1–11 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gilbert, K., Bernier, J., Godbout, R. & Rousseau, G. Resolvin D1, a metabolite of omega-3 polyunsaturated fatty acid, decreases post-myocardial infarct depression. Mar. Drugs 12, 5396–5407 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu, Z. Z. et al. Resolvins RvE1 and RvD1 attenuate inflammatory pain via central and peripheral actions. Nat. Med. 16, 592–597 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Halade, G. V. et al. Race-based and sex-based differences in bioactive lipid mediators after myocardial infarction. Esc. Heart Fail. 7, 1700–1710 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mozaffarian, D. et al. Heart disease and stroke statistics – 2015 update: a report from the American Heart Association. Circulation 131, e29–e322 (2015).

    PubMed 

    Google Scholar 

  • Bibbins-Domingo, K. et al. Racial differences in incident heart failure among young adults. N. Engl. J. Med. 360, 1179–1190 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Serhan, C. N. et al. The atlas of inflammation resolution (AIR). Mol. Asp. Med. 74, 100894 (2020).

    Article 
    CAS 

    Google Scholar 

  • Martin, R. M. et al. Breastfeeding and atherosclerosis: intima-media thickness and plaques at 65-year follow-up of the Boyd Orr cohort. Arterioscler. Thromb. Vasc. Biol. 25, 1482–1488 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • McGill, H. C. Jr. et al. Origin of atherosclerosis in childhood and adolescence. Am. J. Clin. Nutr. 72, 1307S–1315S (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lopez-Melgar, B. et al. Short-term progression of multiterritorial subclinical atherosclerosis. J. Am. Coll. Cardiol. 75, 1617–1627 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Arnardottir, H., Orr, S. K., Dalli, J. & Serhan, C. N. Human milk proresolving mediators stimulate resolution of acute inflammation. Mucosal Immunol. 9, 757–766 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Weiss, G. A. et al. High levels of anti-inflammatory and pro-resolving lipid mediators lipoxins and resolvins and declining docosahexaenoic acid levels in human milk during the first month of lactation. Lipids Health Dis. 12, 89 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Robinson, D. T. et al. Long chain fatty acids and related pro-inflammatory, specialized pro-resolving lipid mediators and their intermediates in preterm human milk during the first month of lactation. Prostaglandins Leukot. Essent. Fat. Acids 121, 1–6 (2017).

    Article 
    CAS 

    Google Scholar 

  • Arnardottir, H. H., Dalli, J., Colas, R. A., Shinohara, M. & Serhan, C. N. Aging delays resolution of acute inflammation in mice: reprogramming the host response with novel nano-proresolving medicines. J. Immunol. 193, 4235–4244 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Doyle, R., Sadlier, D. M. & Godson, C. Pro-resolving lipid mediators: agents of anti-ageing? Semin. Immunol. 40, 36–48 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fitzgerald, H. et al. Resolvin D2-GPR18 enhances bone marrow function and limits steatosis and hepatic collagen accumulation in aging. Am. J. Pathol. 193, 1953–1968 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Libreros, S., Nshimiyimana, R., Lee, B. & Serhan, C. N. Infectious neutrophil deployment is regulated by resolvin D4. Blood 142, 589–606 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pirault, J. & Back, M. Lipoxin and resolvin receptors transducing the resolution of inflammation in cardiovascular disease. Front. Pharmacol. 9, 1273 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Spite, M. & Fredman, G. Insights into the role of the resolvin D2-GPR18 signaling axis in cardiovascular physiology and disease. Adv. Pharmacol. 97, 257–281 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Petri, M. H. et al. The role of the FPR2/ALX receptor in atherosclerosis development and plaque stability. Cardiovasc. Res. 105, 65–74 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Drechsler, M. et al. Annexin A1 counteracts chemokine-induced arterial myeloid cell recruitment. Circ. Res. 116, 827–835 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fredman, G. et al. Targeted nanoparticles containing the proresolving peptide Ac2-26 protect against advanced atherosclerosis in hypercholesterolemic mice. Sci. Transl. Med. 7, 275ra220 (2015).

    Article 

    Google Scholar 

  • Arnardottir, H. et al. The resolvin D1 receptor GPR32 transduces inflammation resolution and atheroprotection. J. Clin. Invest. 131, e14288 (2021).

    Article 

    Google Scholar 

  • Laguna-Fernandez, A. et al. ERV1/ChemR23 signaling protects against atherosclerosis by modifying oxidized low-density lipoprotein uptake and phagocytosis in macrophages. Circulation 138, 1693–1705 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • van der Vorst, E. P. C. et al. Hematopoietic chemR23 (chemerin receptor 23) fuels atherosclerosis by sustaining an M1 macrophage-phenotype and guidance of plasmacytoid dendritic cells to murine lesions – brief report. Arterioscler. Thromb. Vasc. Biol. 39, 685–693 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Lipscomb, M. et al. Resolvin D2-GPR18 signaling on myeloid cells limits plaque necrosis. Preprint at bioRxiv (2023).

  • Moore, F. D. Metabolic Care of the Surgical Patient Section III (Saunders, 1959).

  • Uzun, G. et al. Can lipid mediators and free fatty acids guide acute coronary syndrome diagnosis and treatment? Lab. Med. 2, lmad042 (2023).

    Google Scholar 

  • Capó, X. et al. Resolvins as proresolving inflammatory mediators in cardiovascular disease. Eur. J. Med. Chem. 153, 123–130 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Hamilton, J. A., Hasturk, H., Kantarci, A., Serhan, C. N. & Van Dyke, T. Atherosclerosis, periodontal disease, and treatment with resolvins. Curr. Atheroscler. Rep. 19, 57 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Eswarappa, M., Neylan, T. C., Whooley, M. A., Metzler, T. J. & Cohen, B. E. Inflammation as a predictor of disease course in posttraumatic stress disorder and depression: a prospective analysis from the Mind Your Heart Study. Brain. Behav. Immun. 75, 220–227 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Halade, G. V., Norris, P. C., Kain, V., Serhan, C. N. & Ingle, K. A. Splenic leukocytes define the resolution of inflammation in heart failure. Sci. Signal. 11, eaao1818 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Park, J., Langmead, C. J. & Riddy, D. M. New advances in targeting the resolution of inflammation: implications for specialized pro-resolving mediator GPCR drug discovery. ACS Pharmacol. Transl. Sci. 3, 88–106 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Norris, P. C. & Serhan, C. N. Metabololipidomic profiling of functional immunoresolvent clusters and eicosanoids in mammalian tissues. Biochem. Biophys. Res. Commun. 504, 553–561 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fu, X. et al. High sensitivity and wide linearity LC-MS/MS method for oxylipin quantification in multiple biological samples. J. Lipid Res. 63, 100302 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hersberger, M. Potential role of the lipoxygenase derived lipid mediators in atherosclerosis: leukotrienes, lipoxins and resolvins. Clin. Chem. Lab. Med. 48, 1063–1073 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mas, E., Croft, K. D., Zahra, P., Barden, A. & Mori, T. A. Resolvins D1, D2, and other mediators of self-limited resolution of inflammation in human blood following n-3 fatty acid supplementation. Clin. Chem. 58, 1476–1484 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Norris, P. C. et al. Identification of specialized pro-resolving mediator clusters from healthy adults after intravenous low-dose endotoxin and omega-3 supplementation: a methodological validation. Sci. Rep. 8, 18050 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Biagini, D. et al. Salivary lipid mediators: key indexes of inflammation regulation in heart failure disease. Free. Radic. Biol. Med. 201, 55–65 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Keeley, E. C. et al. Specialized proresolving mediators in symptomatic women with coronary microvascular dysfunction (from the Women’s Ischemia Trial to Reduce Events in Nonobstructive CAD [WARRIOR] Trial). Am. J. Cardiol. 162, 1–5 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ramirez, J. L. et al. Fish oil increases specialized pro-resolving lipid mediators in PAD (The OMEGA-PAD II Trial). J. Surg. Res. 238, 164–174 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Taylor, H. A. et al. Scientific opportunities in resilience research for cardiovascular health and wellness. Report from a National Heart, Lung, and Blood Institute workshop. FASEB J. 36, e22639 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Calder, P. C. Eicosapentaenoic and docosahexaenoic acid derived specialised pro-resolving mediators: concentrations in humans and the effects of age, sex, disease and increased omega-3 fatty acid intake. Biochimie 178, 105–123 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Soehnlein, O. & Libby, P. Targeting inflammation in atherosclerosis–from experimental insights to the clinic. Nat. Rev. Drug. Discov. 20, 589–610 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fredman, G. & Tabas, I. Boosting inflammation resolution in atherosclerosis: the next frontier for therapy. Am. J. Pathol. 187, 1211–1221 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Serhan, C. N. Resolution phases of inflammation: novel endogenous anti-inflammatory and pro-resolving lipid mediators and pathways. Annu. Rev. Immunol. 25, 101–137 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Brennan, E. et al. Pro-resolving lipid mediators: regulators of inflammation, metabolism and kidney function. Nat. Rev. Nephrol. 17, 725–739 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Thatcher, T. H., Freeberg, M. A. T., Myo, Y. P. A. & Sime, P. J. Is there a role for specialized pro-resolving mediators in pulmonary fibrosis? Pharmacol. Ther. 247, 108460 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Spite, M. et al. Resolvin D2 is a potent regulator of leukocytes and controls microbial sepsis. Nature 461, 1287–1291 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Leroy, V. et al. Resolution of post-lung transplant ischemia-reperfusion injury is modulated via Resolvin D1-FPR2 and Maresin 1-LGR6 signaling. J. Heart Lung Transpl. 42, 562–574 (2023).

    Article 

    Google Scholar 

  • Shimizu, T. Lipid mediators in health and disease: enzymes and receptors as therapeutic targets for the regulation of immunity and inflammation. Annu. Rev. Pharmacol. Toxicol. 49, 123–150 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Woodward, D. F., Jones, R. L. & Narumiya, S. International Union of Basic and Clinical Pharmacology. LXXXIII: classification of prostanoid receptors, updating 15 years of progress. Pharmacol. Rev. 63, 471–538 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Serhan, C. N. et al. Design of lipoxin A4 stable analogs that block transmigration and adhesion of human neutrophils. Biochemistry 34, 14609–14615 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sun, Y. P. et al. Anti-inflammatory and pro-resolving properties of benzo-lipoxin A4 analogs. Prostaglandins Leukot. Essent. Fat. Acids 81, 357–366 (2009).

    Article 
    CAS 

    Google Scholar 

  • Orr, S. K., Colas, R. A., Dalli, J., Chiang, N. & Serhan, C. N. Proresolving actions of a new resolvin D1 analog mimetic qualifies as an immunoresolvent. Am. J. Physiol. Lung Cell Mol. Physiol. 308, L904–L911 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun, Y. P. et al. Resolvin D1 and its aspirin-triggered 17R epimer. Stereochemical assignments, anti-inflammatory properties, and enzymatic inactivation. J. Biol. Chem. 282, 9323–9334 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chiang, N. et al. Identification of chemotype agonists for human resolvin D1 receptor DRV1 with pro-resolving functions. Cell Chem. Biol. 26, 244–254.e4 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • US National Library of Medicine. ClinicalTrials.gov (2010).

  • OphthalmologyWeb. Resolvyx Pharmaceuticals, Inc. announces positive data from phase 2 clinical trial of the Resolvin RX-10045 in patients with dry eye syndrome. OphthalmologyWeb (2009).

  • Sulciner, M. L. et al. Resolvins suppress tumor growth and enhance cancer therapy. J. Exp. Med. 215, 115–140 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lance, K. D. et al. Unidirectional and sustained delivery of the proresolving lipid mediator resolvin D1 from a biodegradable thin film device. J. Biomed. Mater. Res. A 105, 31–41 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Serhan, C. N., Lundberg, U., Weissmann, G. & Samuelsson, B. Formation of leukotrienes and hydroxy acids by human neutrophils and platelets exposed to monosodium urate. Prostaglandins 27, 563–581 (1984).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vane, J. R. Biomedicine. Back to an aspirin a day? Science 296, 474–475 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fishbein, A., Hammock, B. D., Serhan, C. N. & Panigrahy, D. Carcinogenesis: failure of resolution of inflammation? Pharmacol. Ther. 218, 107670 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fredman, G., Van Dyke, T. E. & Serhan, C. N. Resolvin E1 regulates adenosine diphosphate activation of human platelets. Arterioscler. Thromb. Vasc. Biol. 30, 2005–2013 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Uno, H. et al. Immunonutrition suppresses acute inflammatory responses through modulation of resolvin E1 in patients undergoing major hepatobiliary resection. Surgery 160, 228–236 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Hartling, I. et al. Quantitative profiling of inflammatory and pro-resolving lipid mediators in human adolescents and mouse plasma using UHPLC-MS/MS. Clin. Chem. Lab. Med. 59, 1811–1823 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Brennan, E. P. et al. Lipoxins protect against inflammation in diabetes-associated atherosclerosis. Diabetes 67, 2657–2667 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Kamaly, N. et al. Targeted interleukin-10 nanotherapeutics developed with a microfluidic chip enhance resolution of inflammation in advanced atherosclerosis. ACS Nano 10, 5280–5292 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kusters, D. H. et al. Pharmacological treatment with annexin A1 reduces atherosclerotic plaque burden in LDLR−/− mice on Western Type Diet. PLoS ONE 10, e0130484 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chiang, N. & Serhan, C. N. Specialized pro-resolving mediator network: an update on production and actions. Essays Biochem. 64, 443–462 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chiang, N. et al. Infection regulates pro-resolving mediators that lower antibiotic requirements. Nature 484, 524–528 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Elajami, T. K. et al. Specialized proresolving lipid mediators in patients with coronary artery disease and their potential for clot remodeling. FASEB J. 30, 2792–2801 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hiram, R. et al. An inflammation resolution-promoting intervention prevents atrial fibrillation due to left-ventricular dysfunction. Cardiovasc. Res. (2023).

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Copyright © All rights reserved. | Newsphere by AF themes.