December 14, 2024

Wellness Nest

take care of your Health d, Live Your Best Life

The next generation of evidence-based medicine

The next generation of evidence-based medicine
  • Ramsey, B. W., Nepom, G. T. & Lonial, S. Academic, foundation, and industry collaboration in finding new therapies. N. Engl. J. Med. 376, 1762–1769 (2017).

    Article 
    CAS 

    Google Scholar 

  • Butler, D. Translational research: crossing the valley of death. Nature 453, 840–842 (2008).

    Article 
    CAS 

    Google Scholar 

  • DiMasi, J. A., Grabowski, H. G. & Hansen, R. W. Innovation in the pharmaceutical industry: new estimates of R&D costs. J. Health Econ. 47, 20–33 (2016).

    Article 

    Google Scholar 

  • Wouters, O. J., McKee, M. & Luyten, J. Estimated research and development investment needed to bring a new medicine to market, 2009–2018. JAMA 323, 844–853 (2020).

    Article 

    Google Scholar 

  • Subbiah, V. A global effort to understand the riddles of COVID-19 and cancer. Nat. Cancer 1, 943–945 (2020).

    Article 
    CAS 

    Google Scholar 

  • Flaherty, K. T. et al. Rethinking cancer clinical trial conduct induced by COVID-19: an academic center, industry, government, and regulatory agency perspective. Cancer Discov. 11, 1881–1885 (2021).

    Article 
    CAS 

    Google Scholar 

  • Samimi, G. et al. Lessons learned from the impact of COVID-19 on NCI-sponsored cancer prevention clinical trials: moving toward participant-centric study designs. Cancer Prev. Res. 15, 279–284 (2022).

    Article 
    CAS 

    Google Scholar 

  • National Center for Chronic Disease Prevention and Health Promotion (NCCDPHP). Health and Economic Costs of Chronic Diseases (2022).

  • Menta, A. K., Subbiah, I. M. & Subbiah, V. Bringing wearable devices into oncology practice: fitting smart technology in the clinic. Discov. Med. 26, 261–270 (2018).

    Google Scholar 

  • Krittanawong, C., Johnson, K. W. & Tang, W. W. How artificial intelligence could redefine clinical trials in cardiovascular medicine: lessons learned from oncology. Per. Med. 16, 83–88 (2019).

    Article 
    CAS 

    Google Scholar 

  • Subbiah, V. & Kurzrock, R. Challenging standard-of-care paradigms in the precision oncology era. Trends Cancer 4, 101–109 (2018).

    Article 

    Google Scholar 

  • Woodcock, J. & LaVange, L. M. Master protocols to study multiple therapies, multiple diseases, or both. N. Engl. J. Med. 377, 62–70 (2017).

    Article 
    CAS 

    Google Scholar 

  • Park, J. J. H. et al. Systematic review of basket trials, umbrella trials, and platform trials: a landscape analysis of master protocols. Trials 20, 572 (2019).

    Article 

    Google Scholar 

  • Dickson, D. et al. The master observational trial: a new class of master protocol to advance precision medicine. Cell 180, 9–14 (2020).

    Article 
    CAS 

    Google Scholar 

  • Das, S. & Lo, A. W. Re-inventing drug development: a case study of the I-SPY 2 breast cancer clinical trials program. Contemp. Clin. Trials 62, 168–174 (2017).

    Article 

    Google Scholar 

  • Redman, M. W. et al. Biomarker-driven therapies for previously treated squamous non-small-cell lung cancer (Lung-MAP SWOG S1400): a biomarker-driven master protocol. Lancet Oncol. 21, 1589–1601 (2020).

    Article 
    CAS 

    Google Scholar 

  • Subbiah, V. et al. Pan-cancer efficacy of vemurafenib in BRAFV600-mutant non-melanoma cancers. Cancer Discov. 10, 657–663 (2020).

    Article 
    CAS 

    Google Scholar 

  • Subbiah, V. et al. Dabrafenib and trametinib treatment in patients with locally advanced or metastatic BRAFV600-mutant anaplastic thyroid cancer. J. Clin. Oncol. 36, 7–13 (2018).

    Article 
    CAS 

    Google Scholar 

  • Subbiah, V. et al. Pan-cancer efficacy of pralsetinib in patients with RET fusion-positive solid tumors from the phase 1/2 ARROW trial. Nat. Med. 28, 1640–1645 (2022).

    Article 
    CAS 

    Google Scholar 

  • Drilon, A. et al. Efficacy of selpercatinib in RET fusion–positive non–small-cell lung cancer. N. Engl. J. Med. 383, 813–824 (2020).

    Article 
    CAS 

    Google Scholar 

  • Subbiah, V. et al. Tumour-agnostic efficacy and safety of selpercatinib in patients with RET fusion-positive solid tumours other than lung or thyroid tumours (LIBRETTO-001): a phase 1/2, open-label, basket trial. Lancet Oncol. 23, 1261–1273 (2022).

    Article 
    CAS 

    Google Scholar 

  • Normand, S.-L. T. The RECOVERY platform. N. Engl. J. Med. 384, 757–758 (2020).

    Article 

    Google Scholar 

  • Turner, N. C. et al. Circulating tumour DNA analysis to direct therapy in advanced breast cancer (plasmaMATCH): a multicentre, multicohort, phase 2a, platform trial. Lancet Oncol. 21, 1296–1308 (2020).

    Article 
    CAS 

    Google Scholar 

  • Gold, S. M. et al. Platform trials and the future of evaluating therapeutic behavioural interventions. Nat. Rev. Psychol. 1, 7–8 (2022).

    Article 

    Google Scholar 

  • Dickson, D. et al. Snapshot: trial types in precision medicine. Cell 181, 208 (2020).

    Article 
    CAS 

    Google Scholar 

  • Ochoa, D. et al. Human genetics evidence supports two-thirds of the 2021 FDA-approved drugs. Nat. Rev. Drug Discov. 21, 551 (2022).

    Article 
    CAS 

    Google Scholar 

  • Wickström, K. & Moseley, J. Biomarkers and surrogate endpoints in drug development: a european regulatory view. Invest. Ophthalmol. Vis. Sci. 58, BIO27–BIO33 (2017).

    Article 

    Google Scholar 

  • Robb, M. A., McInnes, P. M. & Califf, R. M. Biomarkers and surrogate endpoints: developing common terminology and definitions. JAMA 315, 1107–1108 (2016).

    Article 
    CAS 

    Google Scholar 

  • Landers, M., Dorsey, R. & Saria, S. Digital endpoints: definition, benefits, and current barriers in accelerating development and adoption. Digit. Biomark. 5, 216–223 (2021).

    Article 

    Google Scholar 

  • Yang, Y. et al. Artificial intelligence-enabled detection and assessment of Parkinson’s disease using nocturnal breathing signals. Nat. Med. 28, 2207–2215 (2022).

  • Perez, M. V. et al. Large-scale assessment of a smartwatch to identify atrial fibrillation. N. Engl. J. Med. 381, 1909–1917 (2019).

    Article 

    Google Scholar 

  • Guo, Y. et al. Mobile photoplethysmographic technology to detect atrial fibrillation. J. Am. Coll. Cardiol. 74, 2365–2375 (2019).

    Article 

    Google Scholar 

  • Lubitz, S. A. et al. Rationale and design of a large population study to validate software for the assessment of atrial fibrillation from data acquired by a consumer tracker or smartwatch: the Fitbit Heart Study. Am. Heart J. 238, 16–26 (2021).

    Article 

    Google Scholar 

  • Rizas, K. D. et al. Smartphone-based screening for atrial fibrillation: a pragmatic randomized clinical trial. Nat. Med. 28, 1823–1830 (2022).

  • FDA-NIH Biomarker Working Group. BEST (Biomarkers, EndpointS, and other Tools) Resource (2016).

  • Desai, A. & Subbiah, V. COVID-19 pandemic and cancer clinical trial pandemonium: finding the silver lining. J. Immunother. Precis. Oncol. 4, 64–66 (2020).

    Article 

    Google Scholar 

  • Acosta, J. N., Falcone, G. J., Rajpurkar, P. & Topol, E. J. Multimodal biomedical AI. Nat. Med. 28, 1773–1784 (2022).

  • Food and Drug Administration. Digital health technologies for remote data acquisition in clinical investigations, draft guidance for industry, investigators, and other stakeholders. (2022).

  • Thomas, K. A. & Kidziński, Ł. Artificial intelligence can improve patients’ experience in decentralized clinical trials. Nat. Med. (2022).

  • Wong, D. R., Bhattacharya, S. & Butte, A. J. Prototype of running clinical trials in an untrustworthy environment using blockchain. Nat. Commun. 10, 917 (2019).

    Article 

    Google Scholar 

  • Brown, D. G., Wobst, H. J., Kapoor, A., Kenna, L. A. & Southall, N. Clinical development times for innovative drugs. Nat. Rev. Drug Discov. 21, 793–794 (2021).

    Article 

    Google Scholar 

  • Anderson, A. S. A lightspeed approach to pandemic drug development. Nat. Med. 28, 1538 (2022).

    Article 
    CAS 

    Google Scholar 

  • Subbiah, V. et al. Accelerated approvals hit the target in precision oncology. Nat. Med. 28, 1976–1979 (2022).

    Article 
    CAS 

    Google Scholar 

  • Kepplinger, E. E. FDA’s expedited approval mechanisms for new drug products. Biotechnol. Law Rep. 34, 15–37 (2015).

    Article 

    Google Scholar 

  • Ncube, B. M., Dube, A. & Ward, K. Establishment of the African Medicines Agency: progress, challenges and regulatory readiness. J. Pharm. Policy Pract. 14, 29 (2021).

    Article 

    Google Scholar 

  • Moyers, J. T. & Subbiah, V. Think globally, act locally: globalizing precision oncology. Cancer Discov. 12, 886–888 (2022).

    Article 

    Google Scholar 

  • Degtiar, I. & Rose, S. A review of generalizability and transportability. Annu. Rev. Stat. Appl. 10, 1 (2023).

  • Ramagopalan, S. V. et al. Transportability of overall survival estimates from US to Canadian patients with advanced non–small cell lung cancer with implications for regulatory and health technology assessment. JAMA Netw. Open 5, e2239874 (2022).

    Article 

    Google Scholar 

  • Nguengang Wakap, S. et al. Estimating cumulative point prevalence of rare diseases: analysis of the Orphanet database. Eur. J. Hum. Genet. 28, 165–173 (2020).

    Article 

    Google Scholar 

  • Pizzamiglio, C., Vernon, H. J., Hanna, M. G. & Pitceathly, R. D. S. Designing clinical trials for rare diseases: unique challenges and opportunities. Nat. Rev. Methods Primers 2, 13 (2022).

    Article 
    CAS 

    Google Scholar 

  • Food and Drug Administration. FDA approves alpelisib for PIK3CA-related overgrowth spectrum. (2022).

  • Food and Drug Administration. Real-time oncology review. (2022).

  • Food and Drug Administration. Assessment aid. (2022).

  • Lillie, E. O. et al. The n-of-1 clinical trial: the ultimate strategy for individualizing medicine? Per. Med. 8, 161–173 (2011).

    Article 

    Google Scholar 

  • Kim, J. et al. Patient-customized oligonucleotide therapy for a rare genetic disease. N. Engl. J. Med. 381, 1644–1652 (2019).

    Article 
    CAS 

    Google Scholar 

  • Fajgenbaum, D. C. et al. Identifying and targeting pathogenic PI3K/AKT/mTOR signaling in IL-6 blockade–refractory idiopathic multicentric Castleman disease. J. Clin. Investig. 129, 4451–4463 (2019).

    Article 

    Google Scholar 

  • Subbiah, V. et al. Selective RET kinase inhibition for patients with RET-altered cancers. Ann. Oncol. 29, 1869–1876 (2018).

    Article 
    CAS 

    Google Scholar 

  • Woodcock, J. & Marks, P. Drug regulation in the era of individualized therapies. N. Engl. J. Med. 381, 1678–1680 (2019).

    Article 

    Google Scholar 

  • Björnsson, B. et al. Digital twins to personalize medicine. Genome Med. 12, 4 (2019).

    Article 

    Google Scholar 

  • Laubenbacher, R., Sluka, J. P. & Glazier, J. A. Using digital twins in viral infection. Science 371, 1105–1106 (2021).

    Article 
    CAS 

    Google Scholar 

  • Sherman, R. E., Davies, K. M., Robb, M. A., Hunter, N. L. & Califf, R. M. Accelerating development of scientific evidence for medical products within the existing US regulatory framework. Nat. Rev. Drug Discov. 16, 297–298 (2017).

    Article 
    CAS 

    Google Scholar 

  • Concato, J. & Corrigan-Curay, J. Real-world evidence—where are we now? N. Engl. J. Med. 386, 1680–1682 (2022).

    Article 
    CAS 

    Google Scholar 

  • Concato, J., Stein, P., Dal Pan, G. J., Ball, R. & Corrigan-Curay, J. Randomized, observational, interventional, and real-world—what’s in a name? Pharmacoepidemiol. Drug Saf. 29, 1514–1517 (2020).

    Article 

    Google Scholar 

  • Food and Drug Administration. Real-world evidence. (2022).

  • Mishra-Kalyani, P. S. et al. External control arms in oncology: current use and future directions. Ann. Oncol. 33, 376–383 (2022).

    Article 
    CAS 

    Google Scholar 

  • Popat, S. et al. Addressing challenges with real-world synthetic control arms to demonstrate the comparative effectiveness of pralsetinib in non-small cell lung cancer. Nat. Commun. 13, 3500 (2022).

    Article 
    CAS 

    Google Scholar 

  • Gainor, J. F. et al. Pralsetinib for RET fusion-positive non-small-cell lung cancer (ARROW): a multi-cohort, open-label, phase 1/2 study. Lancet Oncol. 22, 959–969 (2021).

    Article 
    CAS 

    Google Scholar 

  • Subbiah, V. et al. Pralsetinib for patients with advanced or metastatic RET-altered thyroid cancer (ARROW): a multi-cohort, open-label, registrational, phase 1/2 study. Lancet Diabetes Endocrinol. 9, 491–501 (2021).

  • Center for Drug Evaluation and Research, Food and Drug Administration. NDA multi-disciplinary review and evaluation: NDA 213756 Koselugo (selumetinib). (2020).

  • Casey, D. et al. FDA approval summary: selumetinib for plexiform neurofibroma. Clin. Cancer Res. 27, 4142–4146 (2021).

    Article 
    CAS 

    Google Scholar 

  • Wilkinson, S. et al. Assessment of alectinib vs ceritinib in ALK-positive non–small cell lung cancer in phase 2 trials and in real-world data. JAMA Netw. Open 4, e2126306 (2021).

    Article 

    Google Scholar 

  • Bartlett, R. H. et al. Extracorporeal membrane oxygenation (ECMO) in neonatal respiratory failure. 100 cases. Ann. Surg. 204, 236–245 (1986).

    Article 
    CAS 

    Google Scholar 

  • McCune, S. & Portman, R. J. Innovation and opportunities in pediatric therapeutic development. Ther. Innov. Regul. Sci. 53, 564–566 (2019).

    Article 

    Google Scholar 

  • Subbiah, V. Fast-tracking novel drugs in pediatric oncology. Cell Cycle 14, 1127–1128 (2015).

    Article 
    CAS 

    Google Scholar 

  • Rajpurkar, P., Chen, E., Banerjee, O. & Topol, E. J. AI in health and medicine. Nat. Med. 28, 31–38 (2022).

    Article 
    CAS 

    Google Scholar 

  • Weissler, E. H. et al. The role of machine learning in clinical research: transforming the future of evidence generation. Trials 22, 537 (2021).

    Article 

    Google Scholar 

  • Adashek, J. J., Subbiah, I. M. & Subbiah, V. Artificial intelligence systems assisting oncologists? Resist and desist or enlist and coexist. Oncologist 24, 1291–1293 (2019).

    Article 

    Google Scholar 

  • Topol, E. J. High-performance medicine: the convergence of human and artificial intelligence. Nat. Med. 25, 44–56 (2019).

    Article 
    CAS 

    Google Scholar 

  • Liu, X. et al. Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI extension. Nat. Med. 26, 1364–1374 (2020).

    Article 
    CAS 

    Google Scholar 

  • Cruz Rivera, S. et al. Guidelines for clinical trial protocols for interventions involving artificial intelligence: the SPIRIT-AI extension. Nat. Med. 26, 1351–1363 (2020).

    Article 
    CAS 

    Google Scholar 

  • Kickingereder, P. et al. Automated quantitative tumour response assessment of MRI in neuro-oncology with artificial neural networks: a multicentre, retrospective study. Lancet Oncol. 20, 728–740 (2019).

    Article 

    Google Scholar 

  • Jarow, J. P., LaVange, L. & Woodcock, J. Multidimensional evidence generation and FDA regulatory decision making: defining and using “real-world” data. JAMA 318, 703–704 (2017).

    Article 

    Google Scholar 

  • Dean, B. Social network usage & growth statistics: how many people use social media in 2022? Backlinko (2021).

  • Wicks, P., Vaughan, T. E., Massagli, M. P. & Heywood, J. Accelerated clinical discovery using self-reported patient data collected online and a patient-matching algorithm. Nat. Biotechnol. 29, 411–414 (2011).

    Article 
    CAS 

    Google Scholar 

  • Morgan, G. et al. The (r)evolution of social media in oncology: engage, enlighten, and encourage. Cancer Discov. 12, 1620–1624 (2022).

    Article 

    Google Scholar 

  • Pessoa-Amorim, G. et al. Making trials part of good clinical care: lessons from the RECOVERY trial. Future Healthc. J. 8, e243–e250 (2021).

    Article 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Copyright © All rights reserved. | Newsphere by AF themes.